多層軟包裝的終端回收挑戰與解方
包裝未來
2025-11-17

多層軟包裝的終端回收挑戰與解方

薄型多層複合包材在全球供應鏈中依然是工程設計的成功案例,同時也是永續上的挑戰。多數零食、咖啡與寵物食品的包裝並非單一材質,而是由多層薄膜組成——例如提供封口與韌性的聚烯烴、負責阻隔的 EVOH 或金屬化層,以及提供視覺效果與結構的油墨與黏著劑。 這些複合結構帶來卓越阻隔性與輕量特性,卻使回收變得困難。 多層軟包裝的「終端命運」位在性能、回收基礎設施與經濟的交會點:如何在保留阻隔性與加工性之下,建立可信、可行的回收路徑。 對包裝產業而言,實務方向聚焦三點: 結構簡化、相容或可拆解設計,以及為回收料建立穩定應用市場 。   多層軟包裝難以回收的三大原因 1. 收集與分選困難 大多數路邊回收系統仍以回收硬質塑膠、金屬與紙類為主。軟膜容易纏繞設備、被風流帶走,最後多被歸入殘餘廢棄物。 即使有軟膜收集,分選機較容易辨識透明 PE;但 PE 與 PP、PA、PET、EVOH 或鋁複合的多層膜在 NIR(近紅外線)設備中會顯示成混合材質,使打包價值降低。大量油墨或含碳黑的顏料更會干擾讀取。 2. 再生料品質不穩 機械回收偏好單一材質。多層包材的異質層會造成污染,產生顆粒、氣味或脆化問題。 金屬化層會在熔融時剝落;強力黏著劑與油墨不易洗掉,形成雜質。 要製作可用於薄膜的 PCR(再生料),必須有乾淨一致的來源與已知添加物,而多層膜若不重新設計,很難達到這要求。 3. 市場需求決定最終去向 即使收集到,端市場仍會影響去留。 較乾淨的透明 PE 可重新變成垃圾袋或簡易薄膜;混合多層膜通常只能降階利用,做成低規格產品,甚至在需求疲弱時改作能源回收。 要建立能長期吸收再生料的市場,必須平衡品質、顏色容忍度與應用規格。   如何讓多層軟包裝更可回收? 1. 儘可能使用單一材質(Mono-material) PE 或 PP 為主的複合結構是目前最可回收的方向。 常見案例: PE//EVOH//PE 結構 全 PP 複合 (鑄造 PP 做封口、OPP 做挺性) 以透明阻隔塗層取代 PET 或 PA 盡量讓主要材質佔 90–95% 以上 。 2. 讓多層結構可「拆解」 如果無法避免第二材質,讓其在清洗或熱處理中分離: 使用可在鹼洗中溶解的黏著系 使用可逆型熱黏著層,使清洗時層間分離 使用可漂浮、可脫墨油墨或可移除標籤膠 3. 讓分選機「看得見」主材質 避免碳黑,改用可被 NIR 辨識的顏料 保留透明區域,減少大面積印刷 在可相容薄膜背面反印,以利脫墨 4. 選擇更相容的黏著與阻隔技術 EVOH 在低比例下(如 <5%)仍可維持阻隔,且相容性較佳 可考慮塗佈型、分散型或 plasma coating 作為替代 金屬化層盡量超薄化,或改採透明阻隔 5. 以實測數據支撐「可回收」主張 必須做 NIR 測試、洗滌測試、熔融流動、異味、造粒顏色 與回收業者合作評估實際可行性   標準機械回收之外的替代回收策略 1. 溶劑法(Dissolution) 選擇性溶解目標聚合物(多為 PE、PP),過濾掉油墨、黏著與阻隔層,再沉澱出更乾淨的樹脂。 成品質比混合料更穩定,能重新用於薄膜或成型件。 2. 化學回收(熱裂解、解聚) 將塑膠轉為油品或單體,可在食品接觸領域透過「質量平衡」回到製程。 適用於機械回收不經濟的複雜膜材,但能耗與收率需納入考量。 3. 封閉式循環再利用(Reusable loops) 在 B2B(企業對企業)供應鏈中,耐用的軟袋可重複清洗使用,減少一次性包材消耗。   透過採購、治理與清晰標示避免漂綠 設定明確 KPI:回收料比例、可回收結構 SKU 比例、分選通過率、洗滌產率、熔融指數穩定度、氣味等級 報告實際回收流向(路邊回收、商店回收、回收廠、化學回收、能源回收) 遵循最嚴格市場的 EPR 規範與回收標示 使用低遷移油墨、黏著,並管理 NIAS(非預期物質) 與回收端共享材料清單、油墨系統、阻隔層資訊 在包裝上清晰標示回收方式(如「PE 薄膜|請至店內回收」)   結語 多層軟包裝的永續改善關鍵在於設計要符合實際回收環境,而非理想狀態。 推動單一材質結構、選擇可相容或可拆解的阻隔與黏著系統、以實測數據驗證,再為無法機械回收的部分建立可信的替代路線,才能讓軟包裝在保有性能的同時,也能真正回到可循環體系。   內容來源: https://www.packaging-gateway.com/
『設計印象雜誌』
橫跨印刷及設計領域的專業媒體,兩個月發行一期紙本雜誌,網站不定期更新
麻省理工學院設計智慧實驗室與 Geolectric 公司合作探索「永續消費性電子產品」
設計創意
2025-11-17

麻省理工學院設計智慧實驗室與 Geolectric 公司合作探索「永續消費性電子產品」

這盞燈具以鹼性地質聚合物為核心,探索其作為消費性電子產品的永續替代材料,並曾作為禮物贈與愛爾蘭總統。 這款極簡燈具由兩個地質聚合物件與一段玻璃肋管組成。 上方構件內嵌了接近感測器,可偵測上方的手部動作;當手靠近時,內部的 LED 光圈會逐漸增亮,只有在觸碰表面後才會完全亮起。 「它帶來非常奇妙的體驗。」MIT 設計智能實驗室(MIT Design Intelligence Lab)主任 Marcelo Coelho 說道。這款燈具也入圍 2025 年 Dezeen Awards 的客製化設計類別。 地質聚合物是將特定礦物與鹼性溶液混合後硬化而成,目前仍處在早期研發階段,但因具備低碳潛力而備受看好。 麻省理工學院設計智慧實驗室設計了一款採用地質聚合物的燈具   它們不像混凝土般會釋放二氧化碳,也不需要像陶瓷一樣進入高溫窯燒。 Coelho 表示,這些材料甚至能以工業副產品與廢棄物製成,有助減少廢料並推動循環經濟。 地質聚合物的主要優勢在於製程。材料可在室溫成形,使電子元件更容易在製作過程中直接嵌入。 在這項作品中,Coelho 使用鋁矽酸鹽與矽酸鈉——兩者都是陶瓷工藝常見的礦物,但這次以室溫條件加工。 「我們希望打造更永續的消費電子產品,同時拓展材料運用的可能性。」Coelho 告訴 Dezeen。「地質聚合物的外觀與觸感都像陶瓷,為通常由塑料或橡膠製成的電子產品帶來全新的材料語彙。」 燈的製造過程中使用了矽酸鋁和矽酸鈉   大多數消費性電子產品都先製作外殼,再以螺絲或膠固定內部電子零件。這種方式雖然可行,但會留下明顯接縫、限制外型,且電子零件更容易暴露於潮氣或撞擊之下。 使用地質聚合物後,設計團隊能在材料硬化過程中直接嵌入電子零件,使外觀乾淨無縫,沒有螺絲或裂縫,也讓形式與互動方式更自由。 「內部電子零件不會限制外部形體。」Coelho 說。 迄今,地質聚合物主要應用在基礎建設,如橋樑部件與耐久保護塗層。Coelho 認為,目前的限制主要來自其製程與供應鏈。 「地質聚合物的混合、澆注與養成方式不同於混凝土或陶瓷,製造端需要一定的調整。」他說。 但團隊相信,材料仍有大量未被開發的可能。 「我最喜歡的構想之一是一個能內嵌加熱器、觸控介面與感測器的廚房操作台,加上 AI 還能教你做菜。」Coelho 分享。 「我們也在研究結合互動功能的戶外家具,為城市帶來新的社交玩法。」他補充,「但在戶外放置電子設備很不容易,環境條件挑戰很大。」 這盞名為 Geolectric 的燈,是 MIT 建築與規劃學院院長 Hashim Sarkis 在 2025 年 MIT 畢業典禮時贈予前愛爾蘭總統 Mary Robinson 的禮物。 Sarkis 也委託製作了另一盞放在 MIT 大門(麻省大道 77 號)的辦公室前廳。 這件作品的靈感來自 Robinson 在 1990 年當選愛爾蘭總統時,在官方官邸 Áras an Uachtaráin 窗邊放置的一盞燈,象徵「歡迎」。 如今第二盞燈也肩負相同象徵——在 MIT 歡迎來自世界各地的移民與新成員。 其他實驗性的燈具設計還包括一種能從地面汲取能量的燈。   內容來源: https://www.dezeen.com/
多層軟包裝的終端回收挑戰與解方
包裝未來
2025-11-17

多層軟包裝的終端回收挑戰與解方

薄型多層複合包材在全球供應鏈中依然是工程設計的成功案例,同時也是永續上的挑戰。多數零食、咖啡與寵物食品的包裝並非單一材質,而是由多層薄膜組成——例如提供封口與韌性的聚烯烴、負責阻隔的 EVOH 或金屬化層,以及提供視覺效果與結構的油墨與黏著劑。 這些複合結構帶來卓越阻隔性與輕量特性,卻使回收變得困難。 多層軟包裝的「終端命運」位在性能、回收基礎設施與經濟的交會點:如何在保留阻隔性與加工性之下,建立可信、可行的回收路徑。 對包裝產業而言,實務方向聚焦三點: 結構簡化、相容或可拆解設計,以及為回收料建立穩定應用市場 。   多層軟包裝難以回收的三大原因 1. 收集與分選困難 大多數路邊回收系統仍以回收硬質塑膠、金屬與紙類為主。軟膜容易纏繞設備、被風流帶走,最後多被歸入殘餘廢棄物。 即使有軟膜收集,分選機較容易辨識透明 PE;但 PE 與 PP、PA、PET、EVOH 或鋁複合的多層膜在 NIR(近紅外線)設備中會顯示成混合材質,使打包價值降低。大量油墨或含碳黑的顏料更會干擾讀取。 2. 再生料品質不穩 機械回收偏好單一材質。多層包材的異質層會造成污染,產生顆粒、氣味或脆化問題。 金屬化層會在熔融時剝落;強力黏著劑與油墨不易洗掉,形成雜質。 要製作可用於薄膜的 PCR(再生料),必須有乾淨一致的來源與已知添加物,而多層膜若不重新設計,很難達到這要求。 3. 市場需求決定最終去向 即使收集到,端市場仍會影響去留。 較乾淨的透明 PE 可重新變成垃圾袋或簡易薄膜;混合多層膜通常只能降階利用,做成低規格產品,甚至在需求疲弱時改作能源回收。 要建立能長期吸收再生料的市場,必須平衡品質、顏色容忍度與應用規格。   如何讓多層軟包裝更可回收? 1. 儘可能使用單一材質(Mono-material) PE 或 PP 為主的複合結構是目前最可回收的方向。 常見案例: PE//EVOH//PE 結構 全 PP 複合 (鑄造 PP 做封口、OPP 做挺性) 以透明阻隔塗層取代 PET 或 PA 盡量讓主要材質佔 90–95% 以上 。 2. 讓多層結構可「拆解」 如果無法避免第二材質,讓其在清洗或熱處理中分離: 使用可在鹼洗中溶解的黏著系 使用可逆型熱黏著層,使清洗時層間分離 使用可漂浮、可脫墨油墨或可移除標籤膠 3. 讓分選機「看得見」主材質 避免碳黑,改用可被 NIR 辨識的顏料 保留透明區域,減少大面積印刷 在可相容薄膜背面反印,以利脫墨 4. 選擇更相容的黏著與阻隔技術 EVOH 在低比例下(如 <5%)仍可維持阻隔,且相容性較佳 可考慮塗佈型、分散型或 plasma coating 作為替代 金屬化層盡量超薄化,或改採透明阻隔 5. 以實測數據支撐「可回收」主張 必須做 NIR 測試、洗滌測試、熔融流動、異味、造粒顏色 與回收業者合作評估實際可行性   標準機械回收之外的替代回收策略 1. 溶劑法(Dissolution) 選擇性溶解目標聚合物(多為 PE、PP),過濾掉油墨、黏著與阻隔層,再沉澱出更乾淨的樹脂。 成品質比混合料更穩定,能重新用於薄膜或成型件。 2. 化學回收(熱裂解、解聚) 將塑膠轉為油品或單體,可在食品接觸領域透過「質量平衡」回到製程。 適用於機械回收不經濟的複雜膜材,但能耗與收率需納入考量。 3. 封閉式循環再利用(Reusable loops) 在 B2B(企業對企業)供應鏈中,耐用的軟袋可重複清洗使用,減少一次性包材消耗。   透過採購、治理與清晰標示避免漂綠 設定明確 KPI:回收料比例、可回收結構 SKU 比例、分選通過率、洗滌產率、熔融指數穩定度、氣味等級 報告實際回收流向(路邊回收、商店回收、回收廠、化學回收、能源回收) 遵循最嚴格市場的 EPR 規範與回收標示 使用低遷移油墨、黏著,並管理 NIAS(非預期物質) 與回收端共享材料清單、油墨系統、阻隔層資訊 在包裝上清晰標示回收方式(如「PE 薄膜|請至店內回收」)   結語 多層軟包裝的永續改善關鍵在於設計要符合實際回收環境,而非理想狀態。 推動單一材質結構、選擇可相容或可拆解的阻隔與黏著系統、以實測數據驗證,再為無法機械回收的部分建立可信的替代路線,才能讓軟包裝在保有性能的同時,也能真正回到可循環體系。   內容來源: https://www.packaging-gateway.com/
麻省理工學院設計智慧實驗室與 Geolectric 公司合作探索「永續消費性電子產品」
設計創意
2025-11-17

麻省理工學院設計智慧實驗室與 Geolectric 公司合作探索「永續消費性電子產品」

這盞燈具以鹼性地質聚合物為核心,探索其作為消費性電子產品的永續替代材料,並曾作為禮物贈與愛爾蘭總統。 這款極簡燈具由兩個地質聚合物件與一段玻璃肋管組成。 上方構件內嵌了接近感測器,可偵測上方的手部動作;當手靠近時,內部的 LED 光圈會逐漸增亮,只有在觸碰表面後才會完全亮起。 「它帶來非常奇妙的體驗。」MIT 設計智能實驗室(MIT Design Intelligence Lab)主任 Marcelo Coelho 說道。這款燈具也入圍 2025 年 Dezeen Awards 的客製化設計類別。 地質聚合物是將特定礦物與鹼性溶液混合後硬化而成,目前仍處在早期研發階段,但因具備低碳潛力而備受看好。 麻省理工學院設計智慧實驗室設計了一款採用地質聚合物的燈具   它們不像混凝土般會釋放二氧化碳,也不需要像陶瓷一樣進入高溫窯燒。 Coelho 表示,這些材料甚至能以工業副產品與廢棄物製成,有助減少廢料並推動循環經濟。 地質聚合物的主要優勢在於製程。材料可在室溫成形,使電子元件更容易在製作過程中直接嵌入。 在這項作品中,Coelho 使用鋁矽酸鹽與矽酸鈉——兩者都是陶瓷工藝常見的礦物,但這次以室溫條件加工。 「我們希望打造更永續的消費電子產品,同時拓展材料運用的可能性。」Coelho 告訴 Dezeen。「地質聚合物的外觀與觸感都像陶瓷,為通常由塑料或橡膠製成的電子產品帶來全新的材料語彙。」 燈的製造過程中使用了矽酸鋁和矽酸鈉   大多數消費性電子產品都先製作外殼,再以螺絲或膠固定內部電子零件。這種方式雖然可行,但會留下明顯接縫、限制外型,且電子零件更容易暴露於潮氣或撞擊之下。 使用地質聚合物後,設計團隊能在材料硬化過程中直接嵌入電子零件,使外觀乾淨無縫,沒有螺絲或裂縫,也讓形式與互動方式更自由。 「內部電子零件不會限制外部形體。」Coelho 說。 迄今,地質聚合物主要應用在基礎建設,如橋樑部件與耐久保護塗層。Coelho 認為,目前的限制主要來自其製程與供應鏈。 「地質聚合物的混合、澆注與養成方式不同於混凝土或陶瓷,製造端需要一定的調整。」他說。 但團隊相信,材料仍有大量未被開發的可能。 「我最喜歡的構想之一是一個能內嵌加熱器、觸控介面與感測器的廚房操作台,加上 AI 還能教你做菜。」Coelho 分享。 「我們也在研究結合互動功能的戶外家具,為城市帶來新的社交玩法。」他補充,「但在戶外放置電子設備很不容易,環境條件挑戰很大。」 這盞名為 Geolectric 的燈,是 MIT 建築與規劃學院院長 Hashim Sarkis 在 2025 年 MIT 畢業典禮時贈予前愛爾蘭總統 Mary Robinson 的禮物。 Sarkis 也委託製作了另一盞放在 MIT 大門(麻省大道 77 號)的辦公室前廳。 這件作品的靈感來自 Robinson 在 1990 年當選愛爾蘭總統時,在官方官邸 Áras an Uachtaráin 窗邊放置的一盞燈,象徵「歡迎」。 如今第二盞燈也肩負相同象徵——在 MIT 歡迎來自世界各地的移民與新成員。 其他實驗性的燈具設計還包括一種能從地面汲取能量的燈。   內容來源: https://www.dezeen.com/